
Shortest Path Algorithms

Kuan-Yu Chen (陳冠宇)

2020/12/16 @ TR-212, NTUST



2

Review

• They each use a specific rule to determine a safe edge in line 
3 of GENERIC-MST

– In Prim’s algorithm
• The set 𝐴 forms a single tree

• The safe edge added to A is always a least-weight edge 
connecting the tree to a vertex not in the tree

– In Kruskal’s algorithm
• The set 𝐴 is a forest whose vertices are all those of the given graph

• The safe edge added to 𝐴 is always a least-weight edge in the 
graph that connects two distinct components (trees)



3

Shortest-paths Problem

• In a shortest-paths problem
– Given a weighted directed graph 𝐺 = (𝑉, 𝐸)

• The weight function 𝑤:𝐸 → ℝ mapping edges to real-valued 
weights

– The weight 𝑤(𝑝) of path 𝑝 = 𝑣0, 𝑣1, … , 𝑣𝑘 is the sum of the 
weights of its constituent edges

– We define the shortest-path weight 𝛿(𝑢, 𝑣) from 𝑢 to 𝑣 by

– We shall focus on the single-source shortest-paths problem
• Given a graph 𝐺 = (𝑉, 𝐸), we want to find a shortest path from a 

given source vertex 𝑠 ∈ 𝑉 to each vertex 𝑣 ∈ 𝑉

𝑤 𝑝 =෍

𝑖=1

𝑘

𝑤(𝑣𝑖−1, 𝑣𝑖)

𝛿 𝑢, 𝑣 = ቊ
min 𝑤 𝑝 : 𝑢↝

𝑝
𝑣 , 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣

∞ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



4

Shortest Path Algorithms

• The representative algorithms, which are used to calculate 
the shortest path, are:
– Dijkstra’s algorithm

– Bellman-Ford algorithm



5

Dijkstra’s Algorithm.

• Dijkstra’s algorithm, given by a Dutch scientist Edsger
Dijkstra in 1959, is used to find the shortest path tree
– Given a graph 𝐺 and a source node 𝐴, the algorithm is used to 

find the shortest path (one having the lowest cost) between 𝐴
(source node) and every other node



6

Dijkstra’s Algorithm..

• Given a graph 𝐺, please take 𝐷 as the 
initial (source) node, and execute the 
Dijkstra’s algorithm on the graph
– Step 1: 

• Set the label of D = 0 and N = {D}

– Step 2: 
• Label of B = 15, G = 23, and F = 5

• Therefore, N = {D, F}

– Step 3: 
• B = 15

• Re-label G = minimum(5 + 13, 23) = 18

• Label C = 14 (5 + 9) 

• Therefore, N = {D,F, C}

0

15

235

5 18

15

14



7

Dijkstra’s Algorithm...

– Step 4: 
• B = 15

• G = 18

• Therefore, N = {D, F, C, B}

– Step 5: 
• G = 18 

• Label A = 19 (15 + 4)

• Therefore, N = {D, F, C, B, G}

– Step 6: 
• A = 19

• Therefore, N = {D, F, C, B, G, A}

5

14

15

18

0

5

14

15

18

0

19

5

14

15

18

0

19

5

14

15

18

0

19



8

Dijkstra’s Algorithm….

• Given a undirected graph 𝐺, please take 
𝐷 as the initial node, and execute the 
Dijkstra’s algorithm on it
– Step 1: 

• Set the label of D = 0 and N = {D}

– Step 2: 
• Label B = 15, G = 23, and F = 5

• Therefore, N = {D, F}

– Step 3: 
• B = 15

• Re-label G = minimum(5 + 13, 23) = 18

• Label C = 14 (5 + 9) 

• Therefore, N = {D,F, C}

A B

C D E

F G

4

17

11

23

13

9

2

5

15

A B

C D E

F G

4

17

11

23

13

9

2

5

15

A B

C D E

F G

4

17

11

23

13

9

2

5

15

0

15

235

0

15

185

14



9

Dijkstra’s Algorithm…..

– Step 4: 
• B = 15

• G = 18

• Label A = 16 (5+9+2) 

• Therefore, N = {D, F, C, B}

– Step 5: 
• G = 18

• Re-label A = minimum(14+2=16,15+4=19)=16

• Label E = 32 (15+17) 

• Therefore, N = {D, F, C, B, A}

A B

C D E

F G

4

17

11

23

13

9

2

5

15

A B

C D E

F G

4

17

11

23

13

9

2

5

15

0

5

16

14

15

18

0

5

14

1516

18

32



10

Dijkstra’s Algorithm……

– Step 6: 
• G = 18

• E = 32

• Therefore, N = {D, F, C, B, A, G}

– Step 7: 
• Re-label E = minimum(18+11,15+17) = 29

• Therefore, N = {D, F, C, B, A, G, E}

A B

C D E

F G

4

17

11

23

13

9

2

5

15

A B

C D E

F G

4

17

11

23

13

9

2

5

15

A B

C D E

F G

4

17

11
23

13

9

2

5

15

0

5

14

15

18

16

32

5

14

1516

29

18



11

MST & Shortest Path Algorithms

• Dijkstra’s algorithm is very similar to Prim’s algorithm
– Both the algorithms begin at a specific node and extend 

outward within the graph, until all other nodes in the graph 
have been reached

– The difference is while Prim’s algorithm stores a minimum cost 
edge, Dijkstra’s algorithm stores the total cost from a source 
node to the current node



12

Bellman-Ford Algorithm

• The Bellman-Ford algorithm solves the single-source 
shortest-paths problem in the general case in which edge 
weights may be negative
– The Bellman-Ford algorithm returns a boolean value indicating 

whether or not there is a negative-weight cycle that is reachable 
from the source

• If there is such a cycle, the algorithm indicates that no solution 
exists (return false)

• If there is no such cycle, the algorithm produces the shortest paths 
and their weights

− − −1



13

Example.

• The source is vertex 𝑠, and we assume that each pass relaxes 
the edges in the order 
𝑡, 𝑥 , 𝑡, 𝑦 , 𝑡, 𝑧 , 𝑥, 𝑡 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑧, 𝑥 , 𝑧, 𝑠 , 𝑠, 𝑡 , (𝑠, 𝑦)

– Iteration1:
• 𝑠, 𝑡 : 𝑡. 𝑑 = 6

• 𝑠, 𝑦 : 𝑦. 𝑑 = 7



14

Example..

• The source is vertex 𝑠, and we assume that each pass relaxes 
the edges in the order 
𝑡, 𝑥 , 𝑡, 𝑦 , 𝑡, 𝑧 , 𝑥, 𝑡 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑧, 𝑥 , 𝑧, 𝑠 , 𝑠, 𝑡 , (𝑠, 𝑦)

– Iteration2:
• 𝑡, 𝑥 : 𝑥. 𝑑 = 6 + 5 = 11

• 𝑡, 𝑦 : 𝑦. 𝑑 = 7 < 6 + 8 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑧 : 𝑧. 𝑑 = 6 − 4 = 2

• 𝑥, 𝑡 : 𝑡. 𝑑 = 6 < 11 − 2 = 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑦, 𝑥 : 𝑥. 𝑑 = 4 = 7 − 3 < 11

• 𝑦, 𝑧 : 𝑧. 𝑑 = 2 < 7 + 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑥 : 𝑥. 𝑑 = 4 < 2 + 7 = 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑠 : 𝑠. 𝑑 = 0 < 2 + 2 = 4 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑡 : 𝑡. 𝑑 = 6 = 0 + 6 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑦 : 𝑦. 𝑑 = 7 = 0 + 7𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒



15

Example...

• The source is vertex 𝑠, and we assume that each pass relaxes 
the edges in the order 
𝑡, 𝑥 , 𝑡, 𝑦 , 𝑡, 𝑧 , 𝑥, 𝑡 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑧, 𝑥 , 𝑧, 𝑠 , 𝑠, 𝑡 , (𝑠, 𝑦)

– Iteration3:
• 𝑡, 𝑥 : 𝑥. 𝑑 = 4 < 6 + 5 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑦 : 𝑦. 𝑑 = 7 < 6 + 8 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑧 : 𝑧. 𝑑 = 2 = 6 − 4 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑥, 𝑡 : 𝑡. 𝑑 = 2 = 4 − 2 < 6

• 𝑦, 𝑥 : 𝑥. 𝑑 = 4 = 7 − 3 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑦, 𝑧 : 𝑧. 𝑑 = 2 < 7 + 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑥 : 𝑥. 𝑑 = 4 < 2 + 7 = 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑠 : 𝑠. 𝑑 = 0 < 2 + 2 = 4 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑡 : 𝑡. 𝑑 = 2 < 0 + 6 = 6 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑦 : 𝑦. 𝑑 = 7 = 0 + 7 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒



16

Example….

• The source is vertex 𝑠, and we assume that each pass relaxes 
the edges in the order 
𝑡, 𝑥 , 𝑡, 𝑦 , 𝑡, 𝑧 , 𝑥, 𝑡 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑧, 𝑥 , 𝑧, 𝑠 , 𝑠, 𝑡 , (𝑠, 𝑦)

– Iteration4:
• 𝑡, 𝑥 : 𝑥. 𝑑 = 4 < 2 + 5 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑦 : 𝑦. 𝑑 = 7 < 2 + 8 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑧 : 𝑧. 𝑑 = −2 = 2 − 4 < 2

• 𝑥, 𝑡 : 𝑡. 𝑑 = 2 = 4 − 2 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑦, 𝑥 : 𝑥. 𝑑 = 4 = 7 − 3 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑦, 𝑧 : 𝑧. 𝑑 = −2 < 7 + 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑥 : 𝑥. 𝑑 = 4 < −2 + 7 = 5 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑠 : 𝑠. 𝑑 = 0 < −2 + 2 = 0 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑡 : 𝑡. 𝑑 = 2 < 0 + 6 = 6 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑦 : 𝑦. 𝑑 = 7 = 0 + 7 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒



17

Example…..

• The source is vertex 𝑠, and we assume that each pass relaxes 
the edges in the order 
𝑡, 𝑥 , 𝑡, 𝑦 , 𝑡, 𝑧 , 𝑥, 𝑡 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑧, 𝑥 , 𝑧, 𝑠 , 𝑠, 𝑡 , (𝑠, 𝑦)

– Check:
• 𝑡, 𝑥 : 𝑥. 𝑑 = 4 < 2 + 5 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑦 : 𝑦. 𝑑 = 7 < 2 + 8 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑡, 𝑧 : 𝑧. 𝑑 = −2 = 2 − 4 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑥, 𝑡 : 𝑡. 𝑑 = 2 = 4 − 2 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑦, 𝑥 : 𝑥. 𝑑 = 4 = 7 − 3 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑦, 𝑧 : 𝑧. 𝑑 = −2 < 7 + 9 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑥 : 𝑥. 𝑑 = 4 < −2 + 7 = 5 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑧, 𝑠 : 𝑠. 𝑑 = 0 < −2 + 2 = 0 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑡 : 𝑡. 𝑑 = 2 < 0 + 6 = 6 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒

• 𝑠, 𝑦 : 𝑦. 𝑑 = 7 = 0 + 7 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒



18

The Algorithm

• The Bellman-Ford algorithm solves the single-source 
shortest-paths problem in the general case in which edge 
weights may be negative
– The Bellman-Ford algorithm returns a boolean value indicating 

whether or not there is a negative-weight cycle that is reachable 
from the source

• If there is such a cycle, the algorithm indicates that no solution 
exists (return false)

• If there is no such cycle, the algorithm produces the shortest paths 
and their weights



19

Unique?

• Shortest paths are not necessarily unique



20

Questions?

kychen@mail.ntust.edu.tw


